Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Solid lipid nanoparticles (SLNs) are lipid-based colloidal systems used for the delivery of active compounds. Although SLNs have many benefits, they show important issues due to physical and chemical instability phenomena during storage. For these reasons, it is highly desirable to have a dried SLN formulation available. Therefore, the aim of the project was to identify suitable methods to obtain a dry powder formulation from an SLN suspension. The nanoparticle suspension was dried using both freeze- and spray-drying techniques. The suitability of these methods in obtaining SLN dry powders was evaluated from the analyses of nanotechnological parameters, system morphology and thermal behavior using differential scanning calorimetry. Results pointed out that both drying techniques, although at different yields, were able to produce an SLN dry powder suitable for pharmaceutical applications. Noteworthily, the freeze-drying of SLNs under optimized conditions led to a dry powder endowed with good reconstitution properties and technological parameters similar to the starting conditions. Moreover, freeze–thaw cycles were carried out as a pretest to study the protective effect of different cryoprotectants (e.g., glucose and mannitol with a concentration ranging from 1% to 10% w/v). Glucose proved to be the most effective in preventing particle growth during freezing, thawing, and freeze-drying processes; in particular, the optimum concentration of glucose was 1% w/v.

Details

Title
Development of Solid Lipid Nanoparticles as Dry Powder: Characterization and Formulation Considerations
Author
Santonocito, Debora 1   VIAFID ORCID Logo  ; Sarpietro, Maria Grazia 1   VIAFID ORCID Logo  ; Castelli, Francesco 1 ; Lauro, Maria Rosaria 2   VIAFID ORCID Logo  ; Torrisi, Cristina 1 ; Russo, Stefano 1   VIAFID ORCID Logo  ; Puglia, Carmelo 1   VIAFID ORCID Logo 

 Department of Drug and Health Science, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy 
 Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy 
First page
1545
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779644002
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.