Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In free-space optical (FSO) communication systems, on–off keying (OOK) is a widely used modulation format. Coherent and non-coherent OOK receivers with sensitivities of −54.60 dBm and −51.25 dBm, respectively, were built with a communication rate of 1 Gbit/s and a bit error rate of 10−3. In an FSO communication system, the parameters must be designed to ensure a sufficient link margin. In contrast to optical fiber systems, FSO systems have ambient light (AL) noise such as sunlight. The efficiency of sunlight coupling in the single-mode fiber (SMF) of the receivers was calculated in this study. For a signal light with AL, the change in the main components of noise and the sensitivity deterioration were theoretically analyzed and experimentally verified in conditions of coherent reception and non-coherent reception with a preamplifier. For coherent reception, the theoretical sensitivity deterioration results are consistent with the experimental results which indicate that coherent reception exhibits better anti-AL noise performance than non-coherent reception when the power spectral density of the AL is the same. Coherent and non-coherent receivers coupled with SMF can work in direct sunlight. When the receiver lens diameter is greater than 4.88 × 10−4 m, the anti-AL noise performance of the receiver can be improved by increasing the receiver lens diameter.

Details

Title
Sensitivity Deterioration of Free-Space Optical Coherent/Non-Coherent OOK Modulation Receiver by Ambient Light Noise
Author
Ren, Weijie 1   VIAFID ORCID Logo  ; Sun, Jianfeng 2 ; Cong, Haisheng 1 ; Jiang, Yuxin 1 

 Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 
 Laboratory of Space Laser Engineering, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China 
First page
2140
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779678761
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.