Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Dynamic response monitoring is of great significance for large engineering structural anomaly diagnosis and early warning. Although the global navigation satellite system (GNSS) has been widely used to measure the dynamic structural response, it has the limitation of a relatively low sampling rate. The micro-electro-mechanical system (MEMS) accelerometer has a high sampling frequency, but it belongs to the approaches of acceleration measurements as the absolute position is unavailable. Hence, in this paper, an integrated vibration monitoring system that includes a GNSS receiver and 3-axis MEMS accelerometers was developed to obtain the dynamic responses under the thunder loading. First, a new denoising algorithm for thunderstorm-induced vibration data was proposed based on variational mode decomposition (VMD) and the characteristics of white noise, and the low-frequency disturbance was separated from the GNSS displacement time series. Then, a power spectral density (PSD) analysis using data collected by the integrated system was carried out to extract low/high natural frequencies. Finally, field monitoring data collected at Huanghuacheng, Hefangkou, and Qilianguan in Beijing’s Huairou District were used to validate the effectiveness of the integrated system and processing scheme. According to the results, the proposed integrated GNSS/MEMS accelerometer system can not only be used to detect thunder loading events, but also completely extract the natural frequency based on PSD analysis. The high natural frequencies detected from the accelerometer data of the four Great Wall monitoring stations excited by the thunderstorms are 42.12 Hz, 12.94 Hz, 12.58 Hz, and 5.95 Hz, respectively, while the low natural frequencies detected from the GNSS are 0.02 Hz, 0.019 Hz, 0.016 Hz, and 0.014 Hz, respectively. Moreover, thunderstorms can cause the Great Wall to vibrate with a maximum displacement of 14.3 cm.

Details

Title
An Integrated GNSS/MEMS Accelerometer System for Dynamic Structural Response Monitoring under Thunder Loading
Author
Wang, Jian 1 ; Liu, Xu 2   VIAFID ORCID Logo  ; Liu, Fei 1 ; Chen, Cai 2 ; Tang, Yuyang 3 

 School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; Research Center for Urban Big Data Applications, Beijing University of Civil Engineering and Architecture, Beijing 100044, China 
 School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 102616, China 
 Research Center for Urban Big Data Applications, Beijing University of Civil Engineering and Architecture, Beijing 100044, China 
First page
1166
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779688555
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.