Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Because clouds and snow block the underlying surface and interfere with the information extracted from an image, the accurate segmentation of cloud/snow regions is essential for imagery preprocessing for remote sensing. Nearly all remote sensing images have a high resolution and contain complex and diverse content, which makes the task of cloud/snow segmentation more difficult. A multi-branch convolutional attention network (MCANet) is suggested in this study. A double-branch structure is adopted, and the spatial information and semantic information in the image are extracted. In this way, the model’s feature extraction ability is improved. Then, a fusion module is suggested to correctly fuse the feature information gathered from several branches. Finally, to address the issue of information loss in the upsampling process, a new decoder module is constructed by combining convolution with a transformer to enhance the recovery ability of image information; meanwhile, the segmentation boundary is repaired to refine the edge information. This paper conducts experiments on the high-resolution remote sensing image cloud/snow detection dataset (CSWV), and conducts generalization experiments on two publicly available datasets (HRC_WHU and L8 SPARCS), and the self-built cloud and cloud shadow dataset. The MIOU scores on the four datasets are 92.736%, 91.649%, 80.253%, and 94.894%, respectively. The experimental findings demonstrate that whether it is for cloud/snow detection or more complex multi-category detection tasks, the network proposed in this paper can completely restore the target details, and it provides a stronger degree of robustness and superior segmentation capabilities.

Details

Title
MCANet: A Multi-Branch Network for Cloud/Snow Segmentation in High-Resolution Remote Sensing Images
Author
Hu, Kai 1   VIAFID ORCID Logo  ; Zhang, Enwei 1 ; Xia, Min 1   VIAFID ORCID Logo  ; Weng, Liguo 1 ; Lin, Haifeng 2   VIAFID ORCID Logo 

 Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China 
 College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China 
First page
1055
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779688563
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.