Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In current Open Banking services, the European Payment Services Directive (PSD2) allows the secure collection of bank customer information, on their behalf and with their consent, to analyze their financial status and needs. The PSD2 directive has lead to a massive number of daily transactions between Fintech entities which require the automatic management of the data involved, generally coming from multiple and heterogeneous sources and formats. In this context, one of the main challenges lies in defining and implementing common data integration schemes to easily merge them into knowledge-base repositories, hence allowing data reconciliation and sophisticated analysis. In this sense, Semantic Web technologies constitute a suitable framework for the semantic integration of data that makes linking with external sources possible and enhances systematic querying. With this motivation, an ontology approach is proposed in this work to operate as a semantic data mediator in real-world open banking operations. According to semantic reconciliation mechanisms, the underpinning knowledge graph is populated with data involved in PSD2 open banking transactions, which are aligned with information from invoices. A series of semantic rules is defined in this work to show how the financial solvency classification of client entities and transaction concept suggestions can be inferred from the proposed semantic model.

Details

Title
A Semantic Model for Enhancing Data-Driven Open Banking Services
Author
Paneque, Manuel  VIAFID ORCID Logo  ; María del Mar Roldán-García  VIAFID ORCID Logo  ; García-Nieto, José  VIAFID ORCID Logo 
First page
1447
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779899505
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.