Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Internet of things (IoT) has opened new dimensions of novel services and computing power for modern living standards by introducing innovative and smart solutions. Due to the extensive usage of these services, IoT has spanned numerous devices and communication entities, which makes the management of the network a complex challenge. Hence it is urgently needed to redefine the management of the IoT network. Software-defined networking (SDN) intrinsic programmability and centralization features simplify network management, facilitate network abstraction, ease network evolution, has the potential to manage the IoT network. SDN’s centralized control plane promotes efficient network resource management by separating the control and data plane and providing a global picture of the underlying network topology. Apart from the inherent benefits, the centralized SDN architecture also brings serious security threats such as spoofing, sniffing, brute force, API exploitation, and denial of service, and requires significant attention to guarantee a secured network. Among these security threats, Distributed Denial of Service (DDoS) and its variant Low-Rate DDoS (LR-DDoS), is one of the most challenging as the fraudulent user generates malicious traffic at a low rate which is extremely difficult to detect and defend. Machine Learning (ML), especially Federated Learning (FL), has shown remarkable success in detecting and defending against such attacks. In this paper, we adopted Weighted Federated Learning (WFL) to detect Low-Rate DDoS (LR-DDoS) attacks. The extensive MATLAB experimentation and evaluation revealed that the proposed work ignites the LR-DDoS detection accuracy compared with the individual Neural Networks (ANN) training algorithms, existing packet analysis-based, and machine learning approaches.

Details

Title
Low Rate DDoS Detection Using Weighted Federated Learning in SDN Control Plane in IoT Network
Author
Muhammad Nadeem Ali 1   VIAFID ORCID Logo  ; Imran, Muhammad 1   VIAFID ORCID Logo  ; Muhammad Salah ud din 2   VIAFID ORCID Logo  ; Byung-Seo, Kim 1   VIAFID ORCID Logo 

 Department of Software & Communications Engineering, Hongik University, Sejong City 30016, Republic of Korea 
 Department of Electronics & Computer Engineering, Hongik University, Sejong City 30016, Republic of Korea 
First page
1431
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779900165
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.