Abstract

Millions of traumatic brain injuries (TBIs) occur annually. TBIs commonly result from falls, traffic accidents, and sports-related injuries, all of which involve rotational acceleration/deceleration of the brain. During these injuries, the brain endures a multitude of primary insults including compression of brain tissue, damaged vasculature, and diffuse axonal injury. All of these deleterious effects can contribute to secondary brain ischemia, cellular death, and neuroinflammation that progress for weeks, months, and lifetime after injury. While the linear effects of head trauma have been extensively modeled, less is known about how rotational injuries mediate neuronal damage following injury. Here, we developed a new model of repetitive rotational head trauma in rodents and demonstrated acute and prolonged pathological, behavioral, and electrophysiological effects of rotational TBI (rTBI). We identify aberrant Cyclin-dependent kinase 5 (Cdk5) activity as a principal mediator of rTBI. We utilized Cdk5-enriched phosphoproteomics to uncover potential downstream mediators of rTBI and show pharmacological inhibition of Cdk5 reduces the cognitive and pathological consequences of injury. These studies contribute meaningfully to our understanding of the mechanisms of rTBI and how they may be effectively treated.

Details

Title
Cdk5 mediates rotational force-induced brain injury
Author
Umfress, Alan 1 ; Chakraborti, Ayanabha 2 ; Priya Sudarsana Devi, Suma 1 ; Adams, Raegan 1 ; Epstein, Daniel 1 ; Massicano, Adriana 3 ; Sorace, Anna 3 ; Singh, Sarbjit 4 ; Iqbal Hossian, M. 5 ; Andrabi, Shaida A. 5 ; Crossman, David K. 6 ; Kumar, Nilesh 7 ; Shahid Mukhtar, M. 8 ; Luo, Huiyang 9 ; Simpson, Claire 10 ; Abell, Kathryn 10 ; Stokes, Matthew 10 ; Wiederhold, Thorsten 10 ; Rosen, Charles 11 ; Lu, Hongbing 12 ; Natarajan, Amarnath 4 ; Bibb, James A. 2 

 University of Alabama at Birmingham, Department of Surgery, Birmingham, USA (GRID:grid.265892.2) (ISNI:0000000106344187) 
 University of Arizona College of Medicine in Phoeni, Department of Translational Neuroscience, Phoenix, USA (GRID:grid.134563.6) (ISNI:0000 0001 2168 186X) 
 University of Alabama at Birmingham, Department of Radiology, Birmingham, USA (GRID:grid.265892.2) (ISNI:0000000106344187) 
 Eppley Institute for Research in Cancer and Allied Diseases University of Nebraska Medical Center, Omaha, USA (GRID:grid.266813.8) (ISNI:0000 0001 0666 4105) 
 University of Alabama at Birmingham, Department of Pharmacology and Toxicology, Birmingham, USA (GRID:grid.265892.2) (ISNI:0000000106344187) 
 University of Alabama at Birmingham, Department of Genetics, Birmingham, USA (GRID:grid.265892.2) (ISNI:0000000106344187) 
 University of Alabama at Birmingham, Department of Biology, Birmingham, USA (GRID:grid.265892.2) (ISNI:0000000106344187) 
 University of Alabama at Birmingham, Department of Surgery, Birmingham, USA (GRID:grid.265892.2) (ISNI:0000000106344187); University of Alabama at Birmingham, Department of Biology, Birmingham, USA (GRID:grid.265892.2) (ISNI:0000000106344187) 
 Karagozian & Case, Inc., Glendale, USA (GRID:grid.455673.6) (ISNI:0000 0004 0372 1487) 
10  Cell Signaling Technology, Danvers, USA (GRID:grid.420530.0) (ISNI:0000 0004 0580 0138) 
11  OSF Healthcare Illinois Neurological Institute, Peoria, USA (GRID:grid.429881.e) (ISNI:0000 0004 0453 2696) 
12  University of Texas at Dallas, Department of Mechanical Engineering, Dallas, USA (GRID:grid.267323.1) (ISNI:0000 0001 2151 7939) 
Pages
3394
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2780613171
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.