Full text

Turn on search term navigation

© 2023 Alfaifi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Two new series of thiazole and formazan linked to 5-Bromo-indan were synthesized, and their structures were assured based on all possible analytical techniques. The size of the tested derivatives was calculated from the XRD technique and found five derivatives 3, 10a, 14a, 15, and 16 on the nanosized scale. The two series were tested for their efficacy and toxicity as anti-colon and stomach cancers. Derivative 10d showed activity more than the two reference drugs used in the case of SNU-16. Surpislly, in the case of COLO205, five derivatives 4, 6c, 6d, 6e, and 10a are better than the two benchmarks used, and two derivatives, 14a and 14b more potent than cisplatin. All potent derivatives showed a strong fit with the active site of the two tested proteins (gastric cancer (PDB = 2BID) and colon cancer (PDB = 2A4L)) in the molecular docking study. The Pharmacophore and ADME studies of the new derivatives showed that most derivatives revealed promising bioactivity, which indicates the drug-likeness properties against kinase inhibitors, protease, and enzyme inhibitors. In addition, the ProTox-II showed that the four compounds 10d, 16, 6d, and 10a are predicted to have oral LD50 values ranging from 335 to 3500 mg/kg in a rat model with (1 s,4 s)-Eucalyptol bearing the highest values and quercetin holding the lowest one.

Details

Title
Indenyl-thiazole and indenyl-formazan derivatives: Synthesis, anticancer screening studies, molecular-docking, and pharmacokinetic/ molin-spiration properties
Author
Alfaifi, Ghaidaa H; Farghaly, Thoraya A; Abdellattif, Magda H  VIAFID ORCID Logo 
First page
e0274459
Section
Research Article
Publication year
2023
Publication date
Mar 2023
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2781185126
Copyright
© 2023 Alfaifi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.