Full text

Turn on search term navigation

© 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Optimal estimation retrievals of trace gas total columns require prior vertical profiles of the gases retrieved to drive the forward model and ensure the retrieval problem is mathematically well posed. For well-mixed gases, it is possible to derive accurate prior profiles using an algorithm that accounts for general patterns of atmospheric transport coupled with measured time series of the gases in questions. Here we describe the algorithm used to generate the prior profiles for GGG2020, a new version of the GGG retrieval that is used to analyze spectra from solar-viewing Fourier transform spectrometers, including the Total Carbon Column Observing Network (TCCON). A particular focus of this work is improving the accuracy of CO2, CH4, N2O, HF, and CO across the tropopause and into the lower stratosphere. We show that the revised priors agree well with independent in situ and space-based measurements and discuss the impact on the total column retrievals.

Details

Title
A new algorithm to generate a priori trace gas profiles for the GGG2020 retrieval algorithm
Author
Laughner, Joshua L 1   VIAFID ORCID Logo  ; Roche, Sébastien 2   VIAFID ORCID Logo  ; Kiel, Matthäus 1   VIAFID ORCID Logo  ; Toon, Geoffrey C 1 ; Wunch, Debra 3   VIAFID ORCID Logo  ; Baier, Bianca C 4 ; Biraud, Sébastien 5   VIAFID ORCID Logo  ; Chen, Huilin 6   VIAFID ORCID Logo  ; Kivi, Rigel 7   VIAFID ORCID Logo  ; Laemmel, Thomas 8   VIAFID ORCID Logo  ; McKain, Kathryn 4   VIAFID ORCID Logo  ; Pierre-Yves Quéhé 9 ; Rousogenous, Constantina 9   VIAFID ORCID Logo  ; Stephens, Britton B 10   VIAFID ORCID Logo  ; Walker, Kaley 3   VIAFID ORCID Logo  ; Wennberg, Paul O 11 

 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 
 Department of Physics, University of Toronto, Toronto, Canada; now at: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA 
 Department of Physics, University of Toronto, Toronto, Canada 
 Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA; Cooperative Institute for Research in Environmental Sciences, University of Colorado – Boulder, Boulder, CO, USA 
 Climate Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA​​​​​​​ 
 Center for Isotope Research, University of Groningen, Groningen, the Netherlands 
 Space and Earth Observation Centre, Finnish Meteorological Institute, Sodankylä, Finland 
 Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), UMR CEA-CNRS-UVSQ, Gif-sur-Yvette, France; now at: Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland 
 Climate and Atmosphere Research Centre (CARE-C), The Cyprus Institute, Nicosia, Cyprus 
10  Earth Observing Laboratory, National Center for Atmospheric Research (NCAR), Boulder, CO, USA 
11  Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA; Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA 
Pages
1121-1146
Publication year
2023
Publication date
2023
Publisher
Copernicus GmbH
ISSN
18671381
e-ISSN
18678548
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2783573119
Copyright
© 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.