Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

For appropriate managing fields and crops, it is essential to understand soil properties. There are drawbacks to the conventional methods currently used for collecting a large amount of data from agricultural lands. Convolutional neural network is a deep learning algorithm that specializes in image classification, and developing soil property prediction techniques using this algorithm will be extremely beneficial to soil management. We present the convolution neural network models for estimating water content and dry density using soil surface images. Soil surface images were taken with a conventional digital camera. The range of water content and dry density were determined considering general upland soil conditions. Each image was divided into segmented images and used for model training and validation. The developed model confirmed that the model can learn soil features through appropriate image argumentation of few of original soil surface images. Additionally, it was possible to predict the soil water content in a situation where various soil dry density conditions were considered.

Details

Title
Convolutional Neural Network-Based Soil Water Content and Density Prediction Model for Agricultural Land Using Soil Surface Images
Author
Kim, Donggeun 1 ; Kim, Taejin 2 ; Jeon, Jihun 2 ; Son, Younghwan 3 

 Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan 
 Department of Rural Systems Engineering, Seoul National University, Seoul 08826, Republic of Korea 
 Department of Rural Systems Engineering, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea 
First page
2936
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785179803
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.