Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The combination of pavement rutting, poor road alignment, and extreme adverse weather will seriously threaten the driving safety of vehicles, whereas only a few of these factors are commonly concerned. This study aims to efficiently evaluate the impacts of various driving conditions on the lateral stability of the vehicle and produce a practical recommendation for pavement maintenance in what concerns rutting. A systematic framework was, thus, developed to conduct a comprehensive evaluation of the lateral stability of the vehicle, which incorporates a single-factor test and multi-factor test based on the stability indicators obtained from Carsim simulations. The vehicle road weather model was established in the Carsim software by considering seven factors, including driving speed, width–height ratio (WHR) of rutting sidewall, radius of circular curve, superelevation, crosswind angle, crosswind speed, and friction coefficient, respectively. The results show that the established framework behaves with satisfactory performance, regarding evaluating the effect of various impact factors on the lateral stability of the vehicle while driving across rutting. Stability indicators suddenly fluctuate in a short time, due to the instantaneous wandering behavior of crossing rutting. Additionally, the sudden fluctuation phenomenon is greatly enlarged, and the vehicle is inclined to occur with lateral instability when WHR equals 5, particularly in roll-over instability. It is recommended to concurrently confine the WHR greater than 10 and friction coefficient greater than 0.4, in order to ensuring driving stability. The multi-factor test revealed that the vehicle speed and WHR of the rutting are leading factors that affect driving stability, followed by the radius of circular curve, superelevation, crosswind angle, crosswind speed and friction coefficient, respectively, which are both essential factors for driving stability. The outcomes of this study may contribute to supplying guidelines for controlling key adverse conditions and making decisions on pavement maintenance.

Details

Title
Evaluation on Lateral Stability of Vehicle: Impacts of Pavement Rutting, Road Alignment, and Adverse Weather
Author
Tian, Gang 1   VIAFID ORCID Logo  ; Jia, Yanshun 2   VIAFID ORCID Logo  ; Chen, Zeqi 1 ; Gao, Ying 1 ; Wang, Shaoquan 1 ; Ziyao Wei 1 ; Chen, Yufei 3 ; Zhang, Tianshuo 1 

 School of Transportation, Southeast University, Nanjing 211189, China 
 School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China 
 College of Transportation Engineering, Tongji University, Shanghai 201804, China 
First page
3250
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785182725
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.