Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Thanks to smart grids, more intelligent devices may now be integrated into the electric grid, which increases the robustness and resilience of the system. The integration of distributed energy resources is expected to require extensive use of communication systems as well as a variety of interconnected technologies for monitoring, protection, and control. The fault location and diagnosis are essential for the security and well-coordinated operation of these systems since there is also greater risk and different paths for a fault or contingency in the system. Considering smart distribution systems, microgrids, and smart automation substations, a full investigation of fault location in SGs over the distribution domain is still not enough, and this study proposes to analyze the fault location issues and common types of power failures in most of their physical components and communication infrastructure. In addition, we explore several fault location techniques in the smart grid’s distribution sector as well as fault location methods recommended to improve resilience, which will aid readers in choosing methods for their own research. Finally, conclusions are given after discussing the trends in fault location and detection techniques.

Details

Title
Fault Location for Distribution Smart Grids: Literature Overview, Challenges, Solutions, and Future Trends
Author
De La Cruz, Jorge 1   VIAFID ORCID Logo  ; Gómez-Luna, Eduardo 2   VIAFID ORCID Logo  ; Ali, Majid 1   VIAFID ORCID Logo  ; Vasquez, Juan C 1 ; Guerrero, Josep M 1   VIAFID ORCID Logo 

 Center for Research on Microgrids (CROM), Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark 
 GRALTA Research Group, Electrical and Electronic Department, Universidad del Valle, Cali 760042, Colombia 
First page
2280
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785194084
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.