Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The generation of mathematical models for the analysis of buildings with multiple thermal zones is a large and complex task. Furthermore, the order and complexity of the dynamical model are increased by the number of included thermal zones. To overcome this problem, this paper presents an algorithm to define the mathematical model automatically, using the geometric and physics parameters as inputs. Additionally, the spatial position of each thermal zone must be recorded in an arrangement called a contact matrix. The algorithm for modeling systems with multiple thermal zones is the main contribution of this work. This algorithm is presented in pseudocode format and as an annex, an implementation in MATLAB software. One of the advantages of this methodology is that it allows us to work with parallelepipeds and not necessarily cubic thermal zones. The algorithm allows us to generate mathematical models with symbolic variables, starting from the knowledge of how many thermal zones compose the system and its geometric organization. This information must be organized in a matrix arrangement called a contact matrix. Different arrays of thermal zones were constructed with wooden boxes to verify the functionality of the models generated with the algorithm. Each case provided information that allowed us to adjust the mathematical models and their simulations, obtaining a range of errors between experimental and simulated temperatures from 2.08 to 5.6, depending on the number of thermal zones studied.

Details

Title
Design of an Algorithm for Modeling Multiple Thermal Zones Using a Lumped-Parameter Model
Author
Fernández de Córdoba, Pedro 1   VIAFID ORCID Logo  ; Frank Florez Montes 2 ; Iglesias Martínez, Miguel E 1   VIAFID ORCID Logo  ; Jose Guerra Carmenate 1   VIAFID ORCID Logo  ; Romeo Selvas 3 ; Taborda, John 4 

 Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain 
 Faculty of Engineering, Universidad Autónoma de Manizales, Manizales 170003, Colombia 
 Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, FCFM Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza 66455, Nuevo León, Mexico 
 Faculty of Engineering, Universidad del Magdalena, Santa Marta 470003, Colombia 
First page
2247
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785194089
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.