Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Microcrystalline Cellulose (MCC) is an isolated, colloidal crystalline portion of cellulose fibers, and it is a valuable alternative to non-renewable fossil-based materials. It is used for a large plethora of different fields, such as composites, food applications, pharmaceutical and medical developments, and cosmetic and material industries. The interest of MCC has also been driven by its economic value. In the last decade, particular attention has been driven to the functionalization of its hydroxyl groups to expand the field of applications of such biopolymer. Herein, we report and describe several pre-treatment methods that have been developed to increase the accessibility of MCC by breaking its dense structure allowing further functionalization. This review also collects the results that have appeared in the literature during the last two decades on the utilization of functionalized MCC as adsorbents (dyes, heavy metals, and carbon dioxide), flame retardants, reinforcing agents, energetic materials, such as azide- and azidodeoxy-modified, and nitrate-based cellulose and biomedical applications.

Details

Title
Recent Developments in Chemical Derivatization of Microcrystalline Cellulose (MCC): Pre-Treatments, Functionalization, and Applications
Author
Lupidi, Gabriele  VIAFID ORCID Logo  ; Pastore, Genny; Marcantoni, Enrico  VIAFID ORCID Logo  ; Gabrielli, Serena  VIAFID ORCID Logo 
First page
2009
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785212303
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.