Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Using modern methods of quantum chemistry, a theoretical substantiation of the high cis-stereospecificity of 1,3-butadiene polymerization catalyzed by the neodymium-based Ziegler–Natta system was carried out. For DFT and ONIOM simulation, the most cis-stereospecific active site of the catalytic system was used. By analyzing the total energy, as well as the enthalpy and Gibbs free energy of the simulated catalytically active centers, it was found that the coordination of 1,3-butadiene in the trans-form was more favorable than in the cis-form by 11 kJ/mol. However, as a result of π-allylic insertion mechanism modeling, it was found that the activation energy of cis-1,3-butadiene insertion into the π-allylic neodymium–carbon bond of the terminal group on the reactive growing chain was 10–15 kJ/mol lower than the activation energy of trans-1,3-butadiene insertion. The activation energies did not change when both trans-1,4-butadiene and cis-1,4-butadiene were used for modeling. That is, 1,4-cis-regulation was due not to the primary coordination of 1,3-butadiene in its cis-configuration, but to its lower energy of attachment to the active site. The obtained results allowed us to clarify the mechanism of the high cis-stereospecificity of 1,3-butadiene polymerization by the neodymium-based Ziegler–Natta system.

Details

Title
DFT and ONIOM Simulation of 1,3-Butadiene Polymerization Catalyzed by Neodymium-Based Ziegler–Natta System
Author
Masliy, Alexey N 1   VIAFID ORCID Logo  ; Akhmetov, Ildar G 2 ; Kuznetsov, Andrey M 1 ; Davletbaeva, Ilsiya M 3   VIAFID ORCID Logo 

 Department of Inorganic Chemistry, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia 
 Nizhnekamsk Chemical and Technological Institute (Branch), Kazan National Research, Technological University, K. Marx Street 68, 420015 Kazan, Russia 
 Technology of Synthetic Rubber Department, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia 
First page
1166
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785213121
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.