Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The rapid development of portable and wearable electronic devices has led researchers to actively study triboelectric nanogenerators (TENGs) that can provide self-powering capabilities. In this study, we propose a highly flexible and stretchable sponge-type TENG, named flexible conductive sponge triboelectric nanogenerator (FCS-TENG), which consists of a porous structure manufactured by inserting carbon nanotubes (CNTs) into silicon rubber using sugar particles. Nanocomposite fabrication processes, such as template-directed CVD and ice freeze casting methods for fabricating porous structures, are very complex and costly. However, the nanocomposite manufacturing process of flexible conductive sponge triboelectric nanogenerators is simple and inexpensive. In the tribo-negative CNT/silicone rubber nanocomposite, the CNTs act as electrodes, increasing the contact area between the two triboelectric materials, increasing the charge density, and improving charge transfer between the two phases. Measurements of the performance of flexible conductive sponge triboelectric nanogenerators using an oscilloscope and a linear motor, under a driving force of 2–7 N, show that it generates an output voltage of up to 1120 V and a current of 25.6 µA. In addition, by using different weight percentages of carbon nanotubes (CNTs), it is shown that the output power increases with the weight percentage of carbon nanotubes (CNTs). The flexible conductive sponge triboelectric nanogenerator not only exhibits good performance and mechanical robustness but can also be directly used in light-emitting diodes connected in series. Furthermore, its output remains extremely stable even after 1000 bending cycles in an ambient environment. In sum, the results demonstrate that flexible conductive sponge triboelectric nanogenerators can effectively power small electronics and contribute to large-scale energy harvesting.

Details

Title
Highly Flexible Triboelectric Nanogenerator Using Porous Carbon Nanotube Composites
Author
Shin, Jaehee 1   VIAFID ORCID Logo  ; Ji, Sungho 1 ; Cho, Hanchul 2   VIAFID ORCID Logo  ; Park, Jinhyoung 1   VIAFID ORCID Logo 

 Department of Mechatronics Engineering, Korea University of Technology & Education, 600, Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Chungcheongnam-do, Cheonan-si 31253, Republic of Korea 
 Precision Mechanical Process and Control R&D Group, Korea Institute of Industrial Technology (KITECH), 42-7, Baegyang-daero 804 beon-gil, Sasang-gu, Busan 46938, Republic of Korea 
First page
1135
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785213544
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.