Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Long-term usage of drinking water with excessive fluoride concentration (above 1.5 mg/L) is known to harm human health. Since the fluoride concentration in the shallow groundwater of the Weigan River Basin, China, exceeds this level, this study explored fluoride’s sources and enrichment mechanism for this basin. Based on information retrieval and regional geological environment analyses, 47 sets of shallow groundwater samples in the Weigan River Basin were collected and analyzed. The research results show that the fluoride content in the drainage basin of the research area ranged from 0.2 to 5.46 mg/L, with an average value of 1.14 mg/L. The test results showed that 40.43% of the water sample test results exceeded the national domestic drinking water safety standard (1.0 mg/L). The average pH value of the research area was 8.37, which was slightly basic. Type Na+–Cl/(SO42−) was the primary hydrochemical type. In the research area, groundwater with a high fluoride concentration contained much sodium and little calcium. The main mechanism of excessive fluoride formation in the groundwater was the continued dissolution of fluorine-containing minerals (fluorite) in the research area, while the main fluorine source was weathering of silicate rocks and evaporites. Evaporation-crystallization and cation exchange were the main factors controlling fluorine enrichment. These findings indicate that physicochemical processes are the major mechanisms for controlling F enrichment and that may be useful for studying F occurrence in groundwater in arid and semi-arid areas.

Details

Title
Fluorine-Rich Shallow Groundwater in Weigan River Basin (Xinjiang): Enrichment Factors and Spatial Distribution
Author
Liu, Tianchao 1 ; Shao, Fengjun 2   VIAFID ORCID Logo  ; Zhang, Zizhao 3 ; Li, Tong 1 

 The First Regional Geological Survey Brigade of the Xinjiang Uygur Autonomous Region Geology and Mineral Exploration and Development Bureau, Urumqi 830011, China 
 School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221008, China; School of Geology and Mining Engineering, Xinjiang University, Urumqi 830046, China 
 School of Geology and Mining Engineering, Xinjiang University, Urumqi 830046, China 
First page
926
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785232976
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.