Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Due to optical noise, electrical noise, and compression error, data hyperspectral remote sensing equipment is inevitably contaminated by various noises, which seriously affect the applications of hyperspectral data. Therefore, it is of great significance to enhance hyperspectral imaging data quality. To guarantee the spectral accuracy during data processing, band-wise algorithms are not suitable for hyperspectral data. This paper proposes a quality enhancement algorithm based on texture search and histogram redistribution combined with denoising and contrast enhancement. Firstly, a texture-based search algorithm is proposed to improve the accuracy of denoising by improving the sparsity of 4D block matching clustering. Then, histogram redistribution and Poisson fusion are used to enhance spatial contrast while preserving spectral information. Synthesized noising data from public hyperspectral datasets are used to quantitatively evaluate the proposed algorithm, and multiple criteria are used to analyze the experimental results. At the same time, classification tasks were used to verify the quality of the enhanced data. The results show that the proposed algorithm is satisfactory for hyperspectral data quality improvement.

Details

Title
Joint Texture Search and Histogram Redistribution for Hyperspectral Image Quality Improvement
Author
Hu, Bingliang 1 ; Chen, Junyu 2 ; Wang, Yihao 1 ; Li, Haiwei 1   VIAFID ORCID Logo  ; Zhang, Geng 1 

 Key Laboratory of Spectral Imaging Technology of Chinese Academy of Sciences, Xi’an Institute of Optics and Precision Mechanics of CAS, Xi’an 710119, China 
 Key Laboratory of Spectral Imaging Technology of Chinese Academy of Sciences, Xi’an Institute of Optics and Precision Mechanics of CAS, Xi’an 710119, China; University of Chinese Academy of Sciences, Beijing 100049, China 
First page
2731
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785240705
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.