Full Text

Turn on search term navigation

© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Direct detection of cellular redox signals has shown immense potential as a novel living cell analysis tool. However, the origin of such signals remains unknown, which hinders the widespread use of electrochemical methods for cellular research. In this study, the authors found that intracellular metabolic pathways that generate adenosine triphosphate (ATP) are the main contributors to extracellularly detectable electrochemical signals. This is achieved through the detection of living cells (4,706 cells/chip, linearity: 0.985) at a linear range of 7,466–48,866. Based on this discovery, the authors demonstrated that the cellular signals detected by differential pulse voltammetry (DPV) can be rapidly amplified with a developed medium containing metabolic activator cocktails (MACs). The DPV approach combined with MAC treatment shows a remarkable performance to detect the effects of the anticancer drug CPI-613 on cervical cancer both at a low drug concentration (2 µm) and an extremely short treatment time (1 hour). Furthermore, the senescence of mesenchymal stem cells could also be sensitively quantified using the DPV+MAC method even at a low passage number (P6). Collectively, their findings unveiled the origin of redox signals in living cells, which has important implications for the characterization of various cellular functions and behaviors using electrochemical approaches.

Details

Title
Extracellularly Detectable Electrochemical Signals of Living Cells Originate from Metabolic Reactions
Author
Koo, Kyeong-Mo 1 ; Chang-Dae, Kim 1 ; Kim, Huijung 1 ; Yeon-Woo Cho 1 ; Intan Rosalina Suhito 2 ; Tae-Hyung, Kim 1   VIAFID ORCID Logo 

 School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea 
 School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea; Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore 
Section
Research Articles
Publication year
2023
Publication date
Mar 2023
Publisher
John Wiley & Sons, Inc.
e-ISSN
21983844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2789983049
Copyright
© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.