Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A new metaheuristic algorithm called green anaconda optimization (GAO) which imitates the natural behavior of green anacondas has been designed. The fundamental inspiration for GAO is the mechanism of recognizing the position of the female species by the male species during the mating season and the hunting strategy of green anacondas. GAO’s mathematical modeling is presented based on the simulation of these two strategies of green anacondas in two phases of exploration and exploitation. The effectiveness of the proposed GAO approach in solving optimization problems is evaluated on twenty-nine objective functions from the CEC 2017 test suite and the CEC 2019 test suite. The efficiency of GAO in providing solutions for optimization problems is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that the proposed GAO approach has a high capability in exploration, exploitation, and creating a balance between them and performs better compared to competitor algorithms. In addition, the implementation of GAO on twenty-one optimization problems from the CEC 2011 test suite indicates the effective capability of the proposed approach in handling real-world applications.

Details

Title
Green Anaconda Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
Author
Dehghani, Mohammad 1 ; Trojovský, Pavel 1   VIAFID ORCID Logo  ; Om Parkash Malik 2   VIAFID ORCID Logo 

 Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic 
 Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada 
First page
121
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23137673
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791584456
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.