Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The tensile strength and fracture properties of the c-ZrO2(001)/α-Al2O3(11¯02) interfaces were investigated by first-principle tensile simulations. Models with different stacking sequences of c-ZrO2(001) were examined. The theoretical tensile strength and work of adhesion were present. It was found that the adhesive strength of the interface was strongly influenced by the termination of c-ZrO2(001), and the c-ZrO2(001)/α-Al2O3(11¯02) interfaces adhered weakly. Then, variations of the atomic bonds were observed to clarify the fracture characteristics of the interfaces. Our study indicates that the fracture modes of the O- and Zr-model tend to be ductile fractures, while the fracture mode of the 2O-model is a brittle fracture. Furthermore, all three models were completely separated along the intermediate layer between the initial ZrO2 and Al2O3 slabs. Finally, we compared our results with those available in the published literature, and the potential application of the first-principle results will be further discussed.

Details

Title
New Insights on the Tensile Strength and Fracture Mechanism of c-ZrO2/α-Al2O3 Interfaces
Author
Bao, Zeying  VIAFID ORCID Logo  ; Shang, Fulin  VIAFID ORCID Logo 
First page
3742
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791588271
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.