Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper proposes a novel hybrid model for sentiment analysis. The model leverages the strengths of both the Transformer model, represented by the Robustly Optimized BERT Pretraining Approach (RoBERTa), and the Recurrent Neural Network, represented by Gated Recurrent Units (GRU). The RoBERTa model provides the capability to project the texts into a discriminative embedding space through its attention mechanism, while the GRU model captures the long-range dependencies of the embedding and addresses the vanishing gradients problem. To overcome the challenge of imbalanced datasets in sentiment analysis, this paper also proposes the use of data augmentation with word embeddings by over-sampling the minority classes. This enhances the representation capacity of the model, making it more robust and accurate in handling the sentiment classification task. The proposed RoBERTa-GRU model was evaluated on three widely used sentiment analysis datasets: IMDb, Sentiment140, and Twitter US Airline Sentiment. The results show that the model achieved an accuracy of 94.63% on IMDb, 89.59% on Sentiment140, and 91.52% on Twitter US Airline Sentiment. These results demonstrate the effectiveness of the proposed RoBERTa-GRU hybrid model in sentiment analysis.

Details

Title
RoBERTa-GRU: A Hybrid Deep Learning Model for Enhanced Sentiment Analysis
Author
Kian Long Tan; Chin Poo Lee  VIAFID ORCID Logo  ; Lim, Kian Ming  VIAFID ORCID Logo 
First page
3915
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791592355
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.