Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Real-time diagnosis tools and methods are desired to aid in the intraoperative grading of glioma and tumor boundary identification to achieve safe maximal tumor removal. Raman spectroscopy is an optical method for real-time glioma detection, but few studies use fresh glioma tissue for biochemical analysis. This study is the first investigation of human glioma using a portable VRR-LRRTM Raman analyzer under quasi-clinical conditions, and reveals significant spectral differences between normal (control) and different grades of glioma. A principal component analysis–support vector machine (PCA-SVM) machine learning method was used to distinguish glioma tissues from normal tissues and different glioma grades. The accuracy in identifying glioma from normal tissue was over 80%, compared with histopathology as the gold standard. This result validates the possibility of glioma diagnosis using fresh tissue and provides instant feedback for neurosurgeons in guiding maximal safe resection, and it may support the translation of this portable tool for in vivo and real-time use in tissue biochemical analysis.

Abstract

There is still a lack of reliable intraoperative tools for glioma diagnosis and to guide the maximal safe resection of glioma. We report continuing work on the optical biopsy method to detect glioma grades and assess glioma boundaries intraoperatively using the VRR-LRRTM Raman analyzer, which is based on the visible resonance Raman spectroscopy (VRR) technique. A total of 2220 VRR spectra were collected during surgeries from 63 unprocessed fresh glioma tissues using the VRR-LRRTM Raman analyzer. After the VRR spectral analysis, we found differences in the native molecules in the fingerprint region and in the high-wavenumber region, and differences between normal (control) and different grades of glioma tissues. A principal component analysis–support vector machine (PCA-SVM) machine learning method was used to distinguish glioma tissues from normal tissues and different glioma grades. The accuracy in identifying glioma from normal tissue was over 80%, compared with the gold standard of histopathology reports of glioma. The VRR-LRRTM Raman analyzer may be a new label-free, real-time optical molecular pathology tool aiding in the intraoperative detection of glioma and identification of tumor boundaries, thus helping to guide maximal safe glioma removal and adjacent healthy tissue preservation.

Details

Title
A Handheld Visible Resonance Raman Analyzer Used in Intraoperative Detection of Human Glioma
Author
Zhang, Liang 1 ; Zhou, Yan 2 ; Wu, Binlin 3   VIAFID ORCID Logo  ; Zhang, Shengjia 4 ; Zhu, Ke 5 ; Cheng-Hui, Liu 6 ; Yu, Xinguang 1 ; Alfano, Robert R 6 

 Department of Neurosurgery, Medical School of Nankai University, Tianjin 300071, China; Department of Neurosurgery, PLA General Hospital, Beijing 100853, China 
 Department of Neurosurgery, Air Force Medical Center, Beijing 100142, China 
 Physics Department and CSCU Center for Nanotechnology, Southern Connecticut State University, New Haven, CT 06515, USA 
 JRME Co., Ltd., Taizhou 225300, China 
 Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, China 
 Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, The City College of the City University of New York, New York, NY 10031, USA 
First page
1752
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791597994
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.