Full text

Turn on search term navigation

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Convolutional neural networks (CNNs) are one of the main types of neural networks used for image recognition and classification. CNNs have several uses, some of which are object recognition, image processing, computer vision, and face recognition. Input for convolutional neural networks is provided through images. Convolutional neural networks are used to automatically learn a hierarchy of features that can then be utilized for classification, as opposed to manually creating features. In achieving this, a hierarchy of feature maps is constructed by iteratively convolving the input image with learned filters. Because of the hierarchical method, higher layers can learn more intricate features that are also distortion and translation invariant. The main goals of this study are to help academics understand where there are research gaps and to talk in-depth about CNN’s building blocks, their roles, and other vital issues.

Details

Title
Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions
Author
Mohammad Mustafa Taye  VIAFID ORCID Logo 
First page
52
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20793197
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791599801
Copyright
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.