Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The (001) plate-like BaTiO3 piezoelectric micromaterials are synthesized by topochemical microcrystal conversion technique. BaTiO3 plates with a length of 2~10 μm and thickness of 0.5~1.3 μm are obtained. The dependence of morphology on synthesis conditions is discussed in detail. The crystal symmetry and multiscale domain structures of BaTiO3 plates are systematically investigated by various characterizations. X-ray diffraction (XRD) and Raman spectra analyses demonstrate the tetragonal symmetry of the (001) oriented BaTiO3 plates at room temperature. The domain configurations of the micron BaTiO3 are investigated with a polarized light microscope (PLM) and piezoresponse force microscopy (PFM). The single-crystal-like quality and uniformity are supported by PLM observations. More importantly, the classical 90° banded ferroelectric domains of ~125 nm width are observed for the first time in such BaTiO3 plates. The domain features in the mesoscale BaTiO3 plate are discussed and compared with its bulk counterparts. The results may provide insights into understanding and designing the mesoscale BaTiO3 functional materials.

Details

Title
The Synthesis and Domain Structures of Single-Crystal-Like Mesoscale BaTiO3 Plates
Author
Zheng, Kun 1 ; Zhuang, Jian 1 ; Quan, Yi 2   VIAFID ORCID Logo  ; Zhao, Jinyan 1 ; Wang, Lingyan 1   VIAFID ORCID Logo  ; Wang, Zhe 1 ; Ren, Wei 1 

 Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China 
 School of Microelectronics, Xidian University, Xi’an 740071, China 
First page
538
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791603228
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.