Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The fresh-cut bulbs of the Lanzhou lily (Lilium davidii var. unicolor) experience browning problems during storage. To solve the problem of browning in the preservation of Lanzhou lily bulbs, we first investigated the optimal storage temperature and gas ratio of modified atmosphere packaging (MAP) of Lanzhou lily bulbs. Then, we tested the browning index (BD), activity of phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO) and peroxidase (POD), the content of malonaldehyde (MDA) and other physiological activity indicators related to browning. The results showed that the storage conditions of 10% O2 + 5% CO2 + 85% N2 and 4 °C were the best. To further explore the anti-browning mechanism of MAP in fresh-cut Lanzhou lily bulbs, the integration of metabolome and transcriptome analyses showed that MAP mainly retarded the unsaturated fatty acid/saturated fatty acid ratio in the cell membrane, inhibited the lipid peroxidation of the membrane and thus maintained the integrity of the cell membrane of Lanzhou lily bulbs. In addition, MAP inhibited the oxidation of phenolic substances and provided an anti-tanning effect. This study provided a preservation scheme to solve the problem of the browning of freshly cut Lanzhou lily bulbs, and discussed the mechanism of MAP in preventing browning during the storage of the bulbs.

Details

Title
Integration of Metabolome and Transcriptome Profiling Reveals the Effect of Modified Atmosphere Packaging (MAP) on the Browning of Fresh-Cut Lanzhou Lily (Lilium davidii var. unicolor) Bulbs during Storage
Author
Xu, Li 1   VIAFID ORCID Logo  ; Zhang, Chaoyang 2 ; Wang, Xueqi 2 ; Liu, Xiaoxiao 3 ; Zhu, Xinliang 1 ; Zhang, Ji 1 

 College of Life Science, Northwest Normal University, Lanzhou 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China 
 College of Life Science, Northwest Normal University, Lanzhou 730070, China 
 College of Life Science, Northwest Normal University, Lanzhou 730070, China; Lanzhou Institute of Food and Drug Control, Lanzhou 740050, China 
First page
1335
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791646627
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.