Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ilex dabieshanensis is not only an important ornamental plant, but can also be used to produce Kuding tea, owing to its lipid-lowering and anti-inflammatory medicinal properties. The genetic transformation of I. dabieshanensis is currently difficult, which restricts functional gene studies and molecular breeding research on this species. Virus-induced gene silencing (VIGS) is a powerful tool for determining gene functions in plants. The present study reports the first application of VIGS mediated by a tobacco rattle virus (TRV) vector in I. dabieshanensis. We tested the efficiency of the VIGS system to silence Mg-chelatase H subunit (ChlH) gene through agroinfiltration. The agroinfiltrated leaves of I. dabieshanensis exhibited a typical yellow-leaf phenotype of ChlH gene silencing at 21 days post infiltration. Endogenous ChlH expression levels in the leaves of yellow-leaf phenotype plants were all significantly lower than that in the leaves of mock-infected and control plants. Overall, our results indicated that the TRV-based VIGS system can efficiently silence genes in I. dabieshanensis, and this system will contribute to efficient functional genomics research in I. dabieshanensis.

Details

Title
Efficient Virus-Induced Gene Silencing in Ilex dabieshanensis Using Tobacco Rattle Virus
Author
Chong, Xinran 1 ; Wang, Yue 2 ; Xu, Xiaoyang 1 ; Zhang, Fan 1 ; Wang, Chuanyong 1 ; Zhou, Yanwei 1 ; Zhou, Ting 1 ; Li, Yunlong 1 ; Lu, Xiaoqing 1 ; Chen, Hong 1   VIAFID ORCID Logo 

 Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China 
 College of Horticulture, Jinling Institute of Technology, Nanjing 210038, China 
First page
488
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791647138
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.