Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Currently, biofuels represent a solution for the European Union in the transportation sector in order to reduce the greenhouse gas (GHG) emissions and the dependency of fossil fuels. Biodiesel from vegetable oils is a solution for countries with low GDP per capita to strengthen the internal agriculture, provide jobs, and reduce the use of fossil fuels. In this study, we model and simulate a temperature regulator designed for the biodiesel transesterification process in a discontinuous batch reactor, using methanol and a homogenous basic catalyst. The simulation was based on the kinetical model of the transesterification reaction and the mathematical model of the reactor. We considered molar ratios of alcohol/oil of 6:1 and 9:1, respectively, to shift the reaction equilibrium towards the production of fatty acid methyl esters. In the design of the simulation, the methanol boiling point was considered a restriction, therefore, temperatures below 65 °C were imposed. The results demonstrate that the increase in temperature results in a decrease in the reaction time and a higher yield, especially for the 6:1 molar ratio reaction, and that the optimum temperature for the batch reactor is of 60 °C. Automatic control improves the performance and costs of production.

Details

Title
Aspects Regarding the Modelling and Optimization of the Transesterification Process through Temperature Control of the Chemical Reactor
Author
Stanescu, Ruxandra-Cristina  VIAFID ORCID Logo  ; Cristian-Ioan Leahu  VIAFID ORCID Logo  ; Soica, Adrian
First page
2883
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791649746
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.