Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Advances in interventions after myocardial infarction (MI) have dramatically increased survival, but MI remains the leading cause of heart failure due to maladaptive ventricular remodeling following ischemic damage. Inflammation is crucial in both the initial response to ischemia and subsequent wound healing in the myocardium. To date, preclinical and clinical efforts have been made to elucidate the deleterious effects of immune cells contributing to ventricular remodeling and to identify therapeutic molecular targets. The conventional concept classifies macrophages or monocytes into dichotomous populations, while recent studies support their diverse subpopulations and spatiotemporal dynamicity. The single-cell and spatial transcriptomic landscapes of macrophages in infarcted hearts successfully revealed the heterogeneity of cell types and their subpopulations post-MI. Among them, subsets of Trem2hi macrophages were identified that were recruited to infarcted myocardial tissue in the subacute phase of MI. The upregulation of anti-inflammatory genes was observed in Trem2hi macrophages, and an in vivo injection of soluble Trem2 during the subacute phase of MI significantly improved myocardial function and the remodeling of infarcted mice hearts, suggesting the potential therapeutic role of Trem2 in LV remodeling. Further investigation of the reparative role of Trem2 in LV remodeling would provide novel therapeutic targets for MI.

Details

Title
The Protective Role of TREM2 in the Heterogenous Population of Macrophages during Post-Myocardial Infarction Inflammation
Author
Kim, Sang Hyun 1   VIAFID ORCID Logo  ; Kwan Yong Lee 1   VIAFID ORCID Logo  ; Chang, Kiyuk 1 

 Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea 
First page
5556
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791654262
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.