Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Climate change is leading to combined drought and high temperature stress in many areas, drastically reducing crop production, especially for high-water-consuming crops such as maize. This study aimed to determine how the co-inoculation of an arbuscular mycorrhizal (AM) fungus (Rhizophagus irregularis) and the PGPR Bacillus megaterium (Bm) alters the radial water movement and physiology in maize plants in order to cope with combined drought and high temperature stress. Thus, maize plants were kept uninoculated or inoculated with R. irregularis (AM), with B. megaterium (Bm) or with both microorganisms (AM + Bm) and subjected or not to combined drought and high temperature stress (D + T). We measured plant physiological responses, root hydraulic parameters, aquaporin gene expression and protein abundances and sap hormonal content. The results showed that dual AM + Bm inoculation was more effective against combined D + T stress than single inoculation. This was related to a synergistic enhancement of efficiency of the phytosystem II, stomatal conductance and photosynthetic activity. Moreover, dually inoculated plants maintained higher root hydraulic conductivity, which was related to regulation of the aquaporins ZmPIP1;3, ZmTIP1.1, ZmPIP2;2 and GintAQPF1 and levels of plant sap hormones. This study demonstrates the usefulness of combining beneficial soil microorganisms to improve crop productivity under the current climate-change scenario.

Details

Title
Dual Inoculation with Rhizophagus irregularis and Bacillus megaterium Improves Maize Tolerance to Combined Drought and High Temperature Stress by Enhancing Root Hydraulics, Photosynthesis and Hormonal Responses
Author
Romero-Munar, Antonia 1   VIAFID ORCID Logo  ; Aroca, Ricardo 1   VIAFID ORCID Logo  ; Zamarreño, Angel María 2   VIAFID ORCID Logo  ; García-Mina, José María 2 ; Perez-Hernández, Noelia 3 ; Ruiz-Lozano, Juan Manuel 1   VIAFID ORCID Logo 

 Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda N° 1, 18008 Granada, Spain 
 Departmento de Biología Ambiental, Facultad de Ciencias, Universidad de Navarra, Irunlarrea No 1, 31008 Pamplona, Spain 
 Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda N° 1, 18008 Granada, Spain; Estación Biologia de Doñana (CSIC), Avd. Americo Vespucio 26, 41092 Seville, Spain 
First page
5193
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791656702
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.