Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A great challenge hindering the use of cellulose nanofibers (CNF) as a reinforcing filler in bio-based polymeric matrices are their poor chemical compatibility. This is because of the inherent hydrophilic nature of CNF and the hydrophobic nature of the polymeric matrix. In this study, cellulose laminates were prepared by using CNF as a filler and cellulose acetate butyrate (CAB) as the polymer matrix. To improve the compatibility between CAB and CNF, the residual hydroxyl groups of CAB and the hydroxyl groups on the surface of CNF were cross-linked with bio-derived polyisocyanurate D376N (STABiO™). The composite material was obtained in one step by sandwiching a CNF sheet (10 wt%) coated with a cross-linking agent between CAB films (90 wt%) using hot pressing. When 14.3 wt% of the cross-linking agent to the total weight of CNF and CAB was added, the tensile strength and flexural strength were improved by 72.4% and 16.3%, respectively, compared with neat CAB. It was concluded that this increase in strength is a result of both: cross-linking between the CNF sheets as well as the cross-linking occurring at the CNF/CAB interface.

Details

Title
Composite of Cellulose-Nanofiber-Reinforced Cellulose Acetate Butyrate: Improvement of Mechanical Strength by Cross-Linking of Hydroxyl Groups
Author
Milotskyi, Romain; Serizawa, Ryo; Yanagisawa, Kaoru; Sharma, Gyanendra; Elisabeth Rada Desideria Ito; Fujie, Tetsuo; Wada, Naoki  VIAFID ORCID Logo  ; Takahashi, Kenji  VIAFID ORCID Logo 
First page
130
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
2504477X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791658250
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.