Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We live in the information age and, ironically, meeting the core function of journalism—i.e., to provide people with access to unbiased information—has never been more difficult. This paper explores deep journalism, our data-driven Artificial Intelligence (AI) based journalism approach to study how the LinkedIn media could be useful for journalism. Specifically, we apply our deep journalism approach to LinkedIn to automatically extract and analyse big data to provide the public with information about labour markets; people’s skills and education; and businesses and industries from multi-generational perspectives. The Great Resignation and Quiet Quitting phenomena coupled with rapidly changing generational attitudes are bringing unprecedented and uncertain changes to labour markets and our economies and societies, and hence the need for journalistic investigations into these topics is highly significant. We combine big data and machine learning to create a whole machine learning pipeline and a software tool for journalism that allows discovering parameters for age dynamics in labour markets using LinkedIn data. We collect a total of 57,000 posts from LinkedIn and use it to discover 15 parameters by Latent Dirichlet Allocation algorithm (LDA) and group them into 5 macro-parameters, namely Generations-Specific Issues, Skills and Qualifications, Employment Sectors, Consumer Industries, and Employment Issues. The journalism approach used in this paper can automatically discover and make objective, cross-sectional, and multi-perspective information available to all. It can bring rigour to journalism by making it easy to generate information using machine learning, and can make tools and information available so that anyone can uncover information about matters of public importance. This work is novel since no earlier work has reported such an approach and tool and leveraged it to use LinkedIn media for journalism and to discover multigenerational perspectives (parameters) for age dynamics in labour markets. The approach could be extended with additional AI tools and other media.

Details

Title
Data-Driven Deep Journalism to Discover Age Dynamics in Multi-Generational Labour Markets from LinkedIn Media
Author
Abeer Abdullah Alaql 1 ; AlQurashi, Fahad 1 ; Mehmood, Rashid 2   VIAFID ORCID Logo 

 Department of Computer Science, FCIT, King Abdulaziz University, Jeddah 21589, Saudi Arabia 
 High-Performance Computing Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia 
First page
120
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
26735172
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791665527
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.