Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this work, we analyze a resistive switching random access memory (RRAM) device with the metal–insulator–metal structure of Al/αTiOx/Al. The transport mechanism of our RRAM device is trap-controlled space-charge limited conduction, which does not change during the endurance test. As the number of resistive switching (RS) cycles increases, the current in the low-resistance state (LRS) does not change significantly. In contrast, degradation in the high-resistance state (HRS) is noticeably evident. According to the RS cycle, the current shift fits well with the stretched-exponential equation. The normalized noise power spectral density (Si/I2) measured in the HRS is an order of magnitude higher than that in the LRS owing to the difference in the degree of trap occupancy, which is responsible for the transition of resistance states. During the consecutive RS, the Si/I2 in the HRS rapidly decreases for approximately 100 cycles and then saturates. In contrast, in the LRS, the Si/I2 does not change significantly. Here we propose a model associated with the endurance degradation of the experimental device, and the model is verified with a 1/f noise measurement.

Details

Title
Low-Frequency Noise-Based Mechanism Analysis of Endurance Degradation in Al/αTiOx/Al Resistive Random Access Memory Devices
Author
Jung-Kyu, Lee; Pyo, Juyeong; Sungjun, Kim
First page
2317
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791672391
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.