Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Atmospheric plasma spray (APS) remains the only certified industrial process to produce hydroxyapatite (Hap) coatings on orthopaedic and dental implants intended for commercialization. Despite the established clinical success of Hap-coated implants, such as hip and knee arthroplasties, a concern is being raised regarding the failure and revision rates in younger patients, which are increasing rapidly worldwide. The lifetime risk of replacement for patients in the 50–60 age interval is about 35%, which is significantly higher than 5% for patients aged 70 or older. Improved implants targeted at younger patients are a necessity that experts have been alerted to. One approach is to enhance their bioactivity. For this purpose, the method with the most outstanding biological results is the electrical polarization of Hap, which remarkably accelerates implant osteointegration. There is, however, the technical challenge of charging the coatings. Although this is straightforward on bulk samples with planar faces, it is not easy on coatings, and there are several problems regarding the application of electrodes. To the best of our knowledge, this study demonstrates, for the first time, the electrical charging of APS Hap coatings using a non-contact, electrode-free method: corona charging. Bioactivity enhancement is observed, establishing the promising potential of corona charging in orthopedics and dental implantology. It is found that the coatings can store charge at the surface and bulk levels up to high surface potentials (>1000 V). The biological in vitro results show higher Ca2+ and P5+ intakes in charged coatings compared to non-charged coatings. Moreover, a higher osteoblastic cellular proliferation is promoted in the charged coatings, indicating the promising potential of corona-charged coatings when applied in orthopedics and dental implantology.

Details

Title
Bioactivity Enhancement of Plasma-Sprayed Hydroxyapatite Coatings through Non-Contact Corona Electrical Charging
Author
Prezas, Pedro R 1 ; Soares, Manuel J 1 ; Borges, João P 2   VIAFID ORCID Logo  ; Silva, Jorge C 2   VIAFID ORCID Logo  ; Oliveira, Filipe J 3 ; Graça, Manuel Pedro F 1   VIAFID ORCID Logo 

 I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal 
 I3N-CENIMAT, New University of Lisbon, 1099-085 Lisbon, Portugal 
 CICECO and Materials Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal 
First page
1058
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791680387
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.