Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Intelligent fault diagnosis of roller bearings is facing two important problems, one is that train and test datasets have the same distribution, and the other is the installation positions of accelerometer sensors are limited in industrial environments, and the collected signals are often polluted by background noise. In the recent years, the discrepancy between train and test datasets is decreased by introducing the idea of transfer learning to solve the first issue. In addition, the non-contact sensors will replace the contact sensors. In this paper, a domain adaption residual neural network (DA-ResNet) model using maximum mean discrepancy (MMD) and a residual connection is constructed for cross-domain diagnosis of roller bearings based on acoustic and vibration data. MMD is used to minimize the distribution discrepancy between the source and target domains, thereby improving the transferability of the learned features. Acoustic and vibration signals from three directions are simultaneously sampled to provide more complete bearing information. Two experimental cases are conducted to test the ideas presented. The first is to verify the necessity of multi-source data, and the second is to demonstrate that transfer operation can improve recognition accuracy in fault diagnosis.

Details

Title
A Domain Adaption ResNet Model to Detect Faults in Roller Bearings Using Vibro-Acoustic Data
Author
Liu, Yi 1 ; Xiang, Hang 2 ; Jiang, Zhansi 1 ; Xiang, Jiawei 3   VIAFID ORCID Logo 

 School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China 
 School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730000, China 
 College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China 
First page
3068
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791721658
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.