Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Interferon lambdas (IFNLs) are innate immune cytokines that induce antiviral cellular responses by signaling through a heterodimer composed of IL10RB and the interferon lambda receptor 1 (IFNLR1). Multiple IFNLR1 transcriptional variants are expressed in vivo and are predicted to encode distinct protein isoforms whose function is not fully established. IFNLR1 isoform 1 has the highest relative transcriptional expression and encodes the full-length functional form that supports canonical IFNL signaling. IFNLR1 isoforms 2 and 3 have lower relative expression and are predicted to encode signaling-defective proteins. To gain insight into IFNLR1 function and regulation, we explored how altering relative expression of IFNLR1 isoforms influenced the cellular response to IFNLs. To achieve this, we generated and functionally characterized stable HEK293T clones expressing doxycycline-inducible FLAG-tagged IFNLR1 isoforms. Minimal FLAG-IFNLR1 isoform 1 overexpression markedly increased IFNL3-dependent expression of antiviral and pro-inflammatory genes, a phenotype that could not be further augmented by expressing higher levels of FLAG-IFNLR1 isoform 1. Expression of low levels of FLAG-IFNLR1 isoform 2 led to partial induction of antiviral genes, but not pro-inflammatory genes, after IFNL3 treatment, a phenotype that was largely abrogated at higher FLAG-IFNLR1 isoform 2 expression levels. Expression of FLAG-IFNLR1 isoform 3 partially augmented antiviral gene expression after IFNL3 treatment. In addition, FLAG-IFNLR1 isoform 1 significantly reduced cellular sensitivity to the type-I IFN IFNA2 when overexpressed. These results identify a unique influence of canonical and non-canonical IFNLR1 isoforms on mediating the cellular response to interferons and provide insight into possible pathway regulation in vivo.

Details

Title
Influence of Canonical and Non-Canonical IFNLR1 Isoform Expression on Interferon Lambda Signaling
Author
John Grayson Evans 1   VIAFID ORCID Logo  ; Novotny, Laura A 1   VIAFID ORCID Logo  ; Meissner, Eric G 2   VIAFID ORCID Logo 

 Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, 135 Rutledge Ave., MSC752, Charleston, SC 29425, USA 
 Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, 135 Rutledge Ave., MSC752, Charleston, SC 29425, USA; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA 
First page
632
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19994915
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791745948
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.