It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
With the growing demand for high reliability and safety software, software reliability prediction has attracted more and more attention to identifying potential faults in software. Software reliability growth models (SRGMs) are the most commonly used prediction models in practical software reliability engineering. However, their unrealistic assumptions and environment-dependent applicability restrict their development. Recurrent neural networks (RNNs), such as the long short-term memory (LSTM), provide an end-to-end learning method, have shown a remarkable ability in time-series forecasting and can be used to solve the above problem for software reliability prediction. In this paper, we present an attention-based encoder-decoder RNN called EDRNN to predict the number of failures in the software. More specifically, the encoder-decoder RNN estimates the cumulative faults with the fault detection time as input. The attention mechanism improves the prediction accuracy in the encoder-decoder architecture. Experimental results demonstrate that our proposed model outperforms other traditional SRGMs and neural network-based models in terms of accuracy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer