Abstract

With the growing demand for high reliability and safety software, software reliability prediction has attracted more and more attention to identifying potential faults in software. Software reliability growth models (SRGMs) are the most commonly used prediction models in practical software reliability engineering. However, their unrealistic assumptions and environment-dependent applicability restrict their development. Recurrent neural networks (RNNs), such as the long short-term memory (LSTM), provide an end-to-end learning method, have shown a remarkable ability in time-series forecasting and can be used to solve the above problem for software reliability prediction. In this paper, we present an attention-based encoder-decoder RNN called EDRNN to predict the number of failures in the software. More specifically, the encoder-decoder RNN estimates the cumulative faults with the fault detection time as input. The attention mechanism improves the prediction accuracy in the encoder-decoder architecture. Experimental results demonstrate that our proposed model outperforms other traditional SRGMs and neural network-based models in terms of accuracy.

Details

Title
Software Reliability Prediction through Encoder-Decoder Recurrent Neural Networks
Author
Chen, Li; Zheng, Junjun; Okamura, Hiroyuki; Dohi, Tadashi
Pages
325-340
Publication year
2022
Publication date
2022
Publisher
International Journal of Mathematical, Engineering and Management Sciences
e-ISSN
24557749
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2792899228
Copyright
© 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.