It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The characterization of the uncertainty in radiation damage metrics presents many challenges. This paper examines the current approaches to characterizing radiation damage metrics such as hydrogen and helium gas production, material heating, trapped charge in microelectronics, and lattice displacement damage. Critical uncertainty aspects go beyond just the material cross sections and involve the consideration of energy-dependent cross reaction correlations, the recoil ion energy spectrum, and models used for the partitioning of the recoil ion energy into various forms of energy deposition. This paper starts with a review of terminology and then examines the current approaches in the characterization of uncertainty in radiation damage metrics for several applications. The major deficiencies in the uncertainty of the damage metric characterization are also identified.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer