It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Toxoplasma gondii (T. gondii) is one of the most successful parasites in the world, because about a third of the world's population is seropositive for toxoplasmosis. Treatment regimens for toxoplasmosis have remained unchanged for the past 20 years, and no new drugs have been introduced to the market recently. This study, performed molecular docking to identify interactions of FDA-approved drugs with essential residues in the active site of proteins of T. gondii Dihydrofolate Reductase (TgDHFR), Prolyl-tRNA Synthetase (TgPRS), and Calcium-Dependent Protein Kinase 1 (TgCDPK1). Each protein was docked with 2100 FDA-approved drugs using AutoDock Vina. Also, the Pharmit software was used to generate pharmacophore models based on the TgDHFR complexed with TRC-2533, TgPRS in complex with halofuginone, and TgCDPK1 in complex with a bumped kinase inhibitor, RM-1–132. Molecular dynamics (MD) simulation was also performed for 100 ns to verify the stability of interaction in drug–protein complexes. Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis evaluated the binding energy of selected complexes. Ezetimibe, Raloxifene, Sulfasalazine, Triamterene, and Zafirlukast drugs against the TgDHFR protein, Cromolyn, Cefexim, and Lactulose drugs against the TgPRS protein, and Pentaprazole, Betamethasone, and Bromocriptine drugs against TgCDPK1 protein showed the best results. These drugs had the lowest energy-based docking scores and also stable interactions based on MD analyses with TgDHFR, TgPRS, and TgCDPK1 drug targets that can be introduced as possible drugs for laboratory investigations to treat T. gondii parasite infection.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Hormozgan Health Institute, Hormozgan University of Medical Sciences, Infectious and Tropical Diseases Research Center, Bandar Abbas, Iran (GRID:grid.412237.1) (ISNI:0000 0004 0385 452X)
2 Pasteur Institute of Iran, Molecular Medicine Department, Biotechnology Research Center, Tehran, Iran (GRID:grid.420169.8) (ISNI:0000 0000 9562 2611)
3 University of Zanjan, Polymer Division, Department of Chemistry, Faculty of Science, Zanjan, Iran (GRID:grid.412673.5) (ISNI:0000 0004 0382 4160)
4 Shiraz University of Medical Sciences, Professor Alborzi Clinical Microbiology Research Center, Shiraz, Iran (GRID:grid.412571.4) (ISNI:0000 0000 8819 4698)