Full text

Turn on search term navigation

© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This work presents a general framework for quantum interference between processes that can involve different fundamental particles or quasi-particles. This framework shows that shaping input wavefunctions is a versatile and powerful tool for producing and controlling quantum interference between distinguishable pathways, beyond previously explored quantum interference between indistinguishable pathways. Two examples of quantum interference enabled by shaping in interactions between free electrons, bound electrons, and photons are presented: i) the vanishing of the zero-loss peak by destructive quantum interference when a shaped electron wavepacket couples to light, under conditions where the electron's zero-loss peak otherwise dominates; ii) quantum interference between free electron and atomic (bound electron) spontaneous emission processes, which can be significant even when the free electron and atom are far apart, breaking the common notion that a free electron and an atom must be close by to significantly affect each other's processes. Conclusions show that emerging quantum wave-shaping techniques unlock the door to greater versatility in light-matter interactions and other quantum processes in general.

Details

Title
Quantum Interference between Fundamentally Different Processes Is Enabled by Shaped Input Wavefunctions
Author
Lim, Jeremy 1 ; Kumar, Suraj 2 ; Yee Sin Ang 1   VIAFID ORCID Logo  ; Ang, Lay Kee 1   VIAFID ORCID Logo  ; Wong, Liang Jie 2   VIAFID ORCID Logo 

 Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore, Singapore 
 School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 
Section
Research Articles
Publication year
2023
Publication date
Apr 2023
Publisher
John Wiley & Sons, Inc.
e-ISSN
21983844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2795213012
Copyright
© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.