Background
Stratified medicine seeks to identify gene signatures predicting whether a patient will benefit from a treatment. We evaluated several approaches to identify such signatures using high-dimensional Cox models in randomized clinical trials (RCT).
Methods
We investigated four approaches: penalize biomarker main effects and biomarker-by-treatment interactions using a lasso penalty (full-lasso); control of main effects by principal components or ridge penalty, and lasso on interactions (sPCA+lasso or ridge+lasso); and ‘modified covariates’ in a penalized regression model (Tian et al. 2014). We performed simulations under null and alternative scenarios by varying the sample size n, number of biomarkers H, number of true main effects or treatment-modifiers, effect sizes and correlations. We proposed two novel measures of treatment effect prediction for gene signatures: a difference in C-indices and a Wald-based interaction statistic. We used gene expression data from a RCT of adjuvant chemotherapy in non-small cell lung cancer (n=133) for illustration.
Results
When n=500 and H=20 or 100, methods performed similarly in null scenarios apart from the full-lasso that gives poor results in presence of main effects only. In alternative scenarios: the ridge+lasso and the full-lasso predicted well the treatment benefit for future patients; the modified covariates approach performed poorly when also main effects were present. More extensive simulation results will be presented. In the lung cancer trial, the full-lasso and the ridge+lasso selected a gene signature with four and seven treatment-modifiers.
Conclusion
Preliminary results suggest that ridge+lasso and full-lasso are promising approaches in high-dimensional Cox models to predict the treatment benefit.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© Ternès et al. 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Details
1 Paris-Sud Univ., CESP, INSERM U1018, Villejuif, France (GRID:grid.5842.b) (ISNI:0000000121712558); Gustave Roussy, Service de biostatistique et d’épidémiologie, Villejuif, France (GRID:grid.14925.3b) (ISNI:0000000122849388)
2 Medical University of Vienna, Center for Medical Statistics, Informatics and Intelligent Systems, Vienna, Austria (GRID:grid.22937.3d) (ISNI:0000000092598492)