Full text

Turn on search term navigation

© 2023 Campbell et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The ubiquity of Smartphone applications that aim to identify organisms, including plants, make them potentially useful for increasing people’s engagement with the natural world. However, how well such applications actually identify plants has not been compressively investigated nor has an easily repeatable scoring system to compare across plant groups been developed. This study investigated the ability of six common Smartphone applications (Google Lens, iNaturalist, Leaf Snap, Plant Net, Plant Snap, Seek) to identify herbaceous plants and developed a repeatable scoring system to assess their success. Thirty-eight species of plant were photographed in their natural habitats using a standard Smartphone (Samsung Galaxy A50) and assessed in each app without image enhancement. All apps showed considerable variation across plant species and were better able to identify flowers than leaves. Plant Net and Leaf Snap outperformed the other apps. Even the higher preforming apps did not have an accuracy above ~88% and lower scoring apps were considerably below this. Smartphone apps present a clear opportunity to encourage people to engage more with plants. Their accuracy can be good, but should not be considered excellent or assumed to be correct, particularly if the species in question may be toxic or otherwise problematic.

Details

Title
A repeatable scoring system for assessing Smartphone applications ability to identify herbaceous plants
Author
Campbell, Neil; Peacock, Julie; Bacon, Karen L  VIAFID ORCID Logo 
First page
e0283386
Section
Research Article
Publication year
2023
Publication date
Apr 2023
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2796097562
Copyright
© 2023 Campbell et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.