Abstract

The heavy reliance of lithium-ion batteries (LIBs) has caused rising concerns on the sustainability of lithium and transition metal and the ethic issue around mining practice. Developing alternative energy storage technologies beyond lithium has become a prominent slice of global energy research portfolio. The alternative technologies play a vital role in shaping the future landscape of energy storage, from electrified mobility to the efficient utilization of renewable energies and further to large-scale stationary energy storage. Potassium-ion batteries (PIBs) are a promising alternative given its chemical and economic benefits, making a strong competitor to LIBs and sodium-ion batteries for different applications. However, many are unknown regarding potassium storage processes in materials and how it differs from lithium and sodium and understanding of solid–liquid interfacial chemistry is massively insufficient in PIBs. Therefore, there remain outstanding issues to advance the commercial prospects of the PIB technology. This Roadmap highlights the up-to-date scientific and technological advances and the insights into solving challenging issues to accelerate the development of PIBs. We hope this Roadmap aids the wider PIB research community and provides a cross-referencing to other beyond lithium energy storage technologies in the fast-pacing research landscape.

Details

Title
2023 roadmap for potassium-ion batteries
Author
Xu, Yang 1   VIAFID ORCID Logo  ; Titirici, Magda 2   VIAFID ORCID Logo  ; Chen, Jingwei 3 ; Furio Cora 4 ; Cullen, Patrick L 5 ; Edge, Jacqueline Sophie 2   VIAFID ORCID Logo  ; Fan, Kun 6 ; Fan, Ling 7 ; Feng, Jingyu 5   VIAFID ORCID Logo  ; Hosaka, Tomooki 8 ; Hu, Junyang 9 ; Huang, Weiwei 10 ; Hyde, Timothy I 11 ; Sumair Imtiaz 12   VIAFID ORCID Logo  ; Kang, Feiyu 9 ; Kennedy, Tadhg 13 ; Eun Jeong Kim 8 ; Komaba, Shinichi 8 ; Lander, Laura 2   VIAFID ORCID Logo  ; Phuong Nam Le Pham 14   VIAFID ORCID Logo  ; Liu, Pengcheng 15 ; Lu, Bingan 7 ; Meng, Fanlu 3 ; Mitlin, David 15 ; Monconduit, Laure 16   VIAFID ORCID Logo  ; Palgrave, Robert G 1 ; Qin, Lei 17 ; Ryan, Kevin M 12 ; Gopinathan Sankar 1   VIAFID ORCID Logo  ; Scanlon, David O 18 ; Shi, Tianyi 1 ; Stievano, Lorenzo 16   VIAFID ORCID Logo  ; Tinker, Henry R 1 ; Wang, Chengliang 6   VIAFID ORCID Logo  ; Wang, Hang 19 ; Wang, Huanlei 3 ; Wu, Yiying 17 ; Zhai, Dengyun 9 ; Zhang, Qichun 20   VIAFID ORCID Logo  ; Zhou, Min 19   VIAFID ORCID Logo  ; Zou, Jincheng 6 

 Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom 
 Imperial College London , London, United Kingdom 
 Ocean University of China , Qingdao, People’s Republic of China 
 Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom; Thomas Young Centre, University College London , Gower St, London, United Kingdom 
 School of Engineering and Materials Science, Queen Mary University of London , London, United Kingdom 
 School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology , Wuhan, People’s Republic of China 
 School of Physics and Electronics, Hunan University , Changsha, People’s Republic of China 
 Department of Applied Chemistry, Tokyo University of Science , 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan 
 Shenzhen Geim Graphene Center, Institute of Materials Research, Tsinghua University , Shenzhen, People’s Republic of China 
10  School of Environmental and Chemical Engineering, Yanshan University , Qinhuangdao, People’s Republic of China 
11  Johnson Matthey Technology Centre, Sonning Common , Reading, United Kingdom 
12  Bernal Institute, University of Limerick , Limerick, Ireland; Department of Chemical Sciences, University of Limerick , Limerick, Ireland; The SFI Research Centre for Energy, Climate and Marine (MaREI), University of Limerick , Limerick, Ireland 
13  Bernal Institute, University of Limerick , Limerick, Ireland; Department of Chemical Sciences, University of Limerick , Limerick, Ireland 
14  ICGM, University Montpellier, CNRS , Montpellier, France; Alistore-ERI, CNRS , Amiens, France 
15  Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin , Austin, TX, United States of America 
16  ICGM, University Montpellier, CNRS , Montpellier, France; Alistore-ERI, CNRS , Amiens, France; RS2E, CNRS , Amiens, France 
17  Department of Chemistry and Biochemistry, The Ohio State University , Columbus, OH, United States of America 
18  Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom; Thomas Young Centre, University College London , Gower St, London, United Kingdom; The Faraday Institution, Quad One, Becquerel Avenue, Harwell Campus , Didcot, United Kingdom 
19  Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei, People’s Republic of China 
20  Department of Materials Science and Engineering, City University of Hong Kong , Hong Kong SAR, People’s Republic of China 
First page
021502
Publication year
2023
Publication date
Apr 2023
Publisher
IOP Publishing
e-ISSN
25157655
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2797089319
Copyright
© 2023 Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.