Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Underground goaves were left in many mining areas due to the continuous exploitation of coal resources. These mining areas seriously affect the production safety of the mines and the safety of life and property of the surrounding residents. Enormous safety hazards will be generated if the goaf range is not accurately controlled. In this study, we proposed a method for the detection of goaves in coal mines with a complex terrain by combining controlled source audio-frequency magnetotellurics (CSAMT) and an activated-carbon method for radon measurement. The disadvantage of failing to interpret goaf depth for the activated-carbon method for radon measurement was compensated by the advantage of the capability of goaf-depth sounding for CSAMT. Subsequently, the reference for CSAMT data was provided by the immunity of the activated-carbon method for radon measurement to the influences of terrain, earth electricity, and EMF. On this basis, the proposed method was employed to detect the goaf of Houjiagou Coal Mine in Liulin County, China, and obtained reliable detection results. The feasibility of the comprehensive geophysical prospecting method in the complex terrain was verified and it provides a new reference for the detection method of goaves with other conditions.

Details

Title
Comprehensive Evaluation of Goaf Range in a Coal Mine with a Complex Terrain through CSAMT and an Activated-Carbon Method for Radon Measurement
Author
Long, Jianhui; Liu, Jin  VIAFID ORCID Logo  ; Zhang, Sheng; Li, Meiping
First page
4274
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799587380
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.