Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the increasing trend towards informatization and intelligence in modern warfare, high-intensity and continuous reconnaissance activities are becoming increasingly common in battlefield environments via airborne, vehicle, UAV, satellite and other platforms. Visible and infrared images are preferred due to their high resolution, strong contrast, rich texture details and color features, and strong information expression ability. However, the quality of imaging is easily affected by environmental factors, making it crucial to quickly and accurately filter useful information from massive image data. To this end, super-resolution image preprocessing can improve the detection performance of UAV, and reduce false detection and missed detection of targets. Additionally, super-resolution reconstruction results in high-quality images that can be used to expand UAV datasets and enhance the UAV characteristics, thereby enabling the enhancement of small targets. In response to the challenge of “low-slow small” UAV targets at long distances, we propose a multi-scale fusion super-resolution reconstruction (MFSRCNN) algorithm based on the fast super-resolution reconstruction (FSRCNN) algorithm and multi-scale fusion. Our experiments confirm the feasibility of the algorithm in reconstructing detailed information of the UAV target. On average, the MFSRCNN reconstruction time is 0.028 s, with the average confidence before and after reconstruction being 80.73% and 86.59%, respectively, resulting in an average increase of 6.72%.

Details

Title
Research on Detection and Recognition Technology of a Visible and Infrared Dim and Small Target Based on Deep Learning
Author
Dong, Yuxing; Li, Yan; Li, Zhen
First page
1732
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799637095
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.