Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ground-penetrating radar (GPR) is an efficient and nondestructive geophysical method with great potential for detecting soil water content at the farmland scale. However, a key challenge in soil detection is obtaining soil water content rapidly and in real-time. In recent years, deep learning methods have become more widespread in the earth sciences, making it possible to use them for soil water content inversion from GPR data. In this paper, we propose a neural network framework GPRSW based on deep learning of GPR data. GPRSW is an end-to-end network that directly inverts volumetric soil water content (VSWC) through single-channel GPR data. Synthetic experiments show that GPRSW accurately identifies different VSWC boundaries in the model in time depth. The predicted VSWC and model fit well within 40 ns, with a maximum error after 40 ns of less than 0.10 cm3 × cm−3. To validate our method, we conducted GPR measurements at the experimental field of the Academy of Agricultural Sciences in Gongzhuling City, Jilin Province and applied GPRSW to VSWC measurements. The results show that predicted values of GPRSW match with field soil samples and are consistent with the overall trend of the TDR soil probe samples, with a maximum difference not exceeding 0.03 cm3 × cm−3. Therefore, our study shows that GPRSW has the potential to be applied to obtain soil water content from GPR data on farmland.

Details

Title
Study on Rapid Inversion of Soil Water Content from Ground-Penetrating Radar Data Based on Deep Learning
Author
Li, Zhilian 1 ; Zeng, Zhaofa 1 ; Xiong, Hongqiang 1 ; Lu, Qi 1   VIAFID ORCID Logo  ; An, Baizhou 1 ; Jiahe Yan 1   VIAFID ORCID Logo  ; Li, Risheng 2 ; Xia, Longfei 2 ; Wang, Haoyu 1 ; Liu, Kexin 1 

 College of Geo-Exploration Science and Technology, Jilin University, 938 Ximinzhu Street, Changchun 130026, China 
 Shaanxi Land Engineering Construction Group Co., Ltd., Xi’an 710075, China 
First page
1906
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799747495
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.