Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Given the increasing prevalence of intelligent systems capable of autonomous actions or augmenting human activities, it is important to consider scenarios in which the human, autonomous system, or both can exhibit failures as a result of one of several contributing factors (e.g., perception). Failures for either humans or autonomous agents can lead to simply a reduced performance level, or a failure can lead to something as severe as injury or death. For our topic, we consider the hybrid human–AI teaming case where a managing agent is tasked with identifying when to perform a delegated assignment and whether the human or autonomous system should gain control. In this context, the manager will estimate its best action based on the likelihood of either (human, autonomous) agent’s failure as a result of their sensing capabilities and possible deficiencies. We model how the environmental context can contribute to, or exacerbate, these sensing deficiencies. These contexts provide cases where the manager must learn to identify agents with capabilities that are suitable for decision-making. As such, we demonstrate how a reinforcement learning manager can correct the context–delegation association and assist the hybrid team of agents in outperforming the behavior of any agent working in isolation.

Details

Title
Compensating for Sensing Failures via Delegation in Human–AI Hybrid Systems
Author
Fuchs, Andrew 1   VIAFID ORCID Logo  ; Passarella, Andrea 2   VIAFID ORCID Logo  ; Conti, Marco 2   VIAFID ORCID Logo 

 Department of Computer Science, Universitá di Pisa, 56124 Pisa, Italy; Institute for Informatics and Telematics (IIT), National Research Council (CNR), 56124 Pisa, Italy 
 Institute for Informatics and Telematics (IIT), National Research Council (CNR), 56124 Pisa, Italy 
First page
3409
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799783513
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.