Abstract

Designing efficient catalyst for the oxygen evolution reaction (OER) is of importance for energy conversion devices. The anionic redox allows formation of O-O bonds and offers higher OER activity than the conventional metal sites. Here, we successfully prepare LiNiO2 with a dominant 3d8L configuration (L is a hole at O 2p) under high oxygen pressure, and achieve a double ligand holes 3d8L2 under OER since one electron removal occurs at O 2p orbitals for NiIII oxides. LiNiO2 exhibits super-efficient OER activity among LiMO2, RMO3 (M = transition metal, R = rare earth) and other unary 3d catalysts. Multiple in situ/operando spectroscopies reveal NiIII→NiIV transition together with Li-removal during OER. Our theory indicates that NiIV (3d8L2) leads to direct O-O coupling between lattice oxygen and *O intermediates accelerating the OER activity. These findings highlight a new way to design the lattice oxygen redox with enough ligand holes created in OER process.

Lattice-oxygen redox is pivotal for high oxygen evolution reaction (OER) activity. Here, LiNiO2, a unary 3d-transition metal oxide catalyst, exhibits superefficient activity during the OER due to the creation of double O 2p holes states, according to operando XAS, XRD, and Raman spectroscopy observations.

Details

Title
Unusual double ligand holes as catalytic active sites in LiNiO2
Author
Huang, Haoliang 1   VIAFID ORCID Logo  ; Chang, Yu-Chung 2 ; Huang, Yu-Cheng 3 ; Li, Lili 1 ; Komarek, Alexander C. 4   VIAFID ORCID Logo  ; Tjeng, Liu Hao 4   VIAFID ORCID Logo  ; Orikasa, Yuki 5   VIAFID ORCID Logo  ; Pao, Chih-Wen 2 ; Chan, Ting-Shan 2   VIAFID ORCID Logo  ; Chen, Jin-Ming 2 ; Haw, Shu-Chih 2 ; Zhou, Jing 1 ; Wang, Yifeng 1 ; Lin, Hong-Ji 2 ; Chen, Chien-Te 2 ; Dong, Chung-Li 3   VIAFID ORCID Logo  ; Kuo, Chang-Yang 6 ; Wang, Jian-Qiang 7   VIAFID ORCID Logo  ; Hu, Zhiwei 4   VIAFID ORCID Logo  ; Zhang, Linjuan 7   VIAFID ORCID Logo 

 Chinese Academy of Sciences, Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Shanghai, China (GRID:grid.9227.e) (ISNI:0000000119573309) 
 National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC (GRID:grid.410766.2) (ISNI:0000 0001 0749 1496) 
 Tamkang University, Department of Physics, New Taipei City, Taiwan, ROC (GRID:grid.264580.d) (ISNI:0000 0004 1937 1055) 
 Max Planck Institute for Chemical Physics of Solids, Dresden, Germany (GRID:grid.419507.e) (ISNI:0000 0004 0491 351X) 
 Ritsumeikan University, Kusatsu, Department of Applied Chemistry, Shiga, Japan (GRID:grid.262576.2) (ISNI:0000 0000 8863 9909) 
 National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC (GRID:grid.410766.2) (ISNI:0000 0001 0749 1496); National Yang Ming Chiao Tung University, Department of Electrophysics, Hsinchu, Taiwan, ROC (GRID:grid.260539.b) (ISNI:0000 0001 2059 7017) 
 Chinese Academy of Sciences, Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Shanghai, China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419) 
Pages
2112
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2800436246
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.