Full Text

Turn on search term navigation

© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to promote the driving range of the electric vehicles (EVs), decrease the demand for large capacity battery and create more charging opportunities for the EVs, the static-dynamic hybrid wireless charging system is presented to utilize waiting time of traffic lights at intersections to replenish electricity in this paper. Firstly, the topology and principle of the proposed static-dynamic hybrid wireless charging system with short-segmented coils at traffic lights are introduced. Secondly, the general circuit model of the static-dynamic hybrid wireless charging system with multi-coupling between the primary and secondary sides is developed. The design method of the compensation circuit in primary side based on the number and the positions of the energized primary coils is investigated. After analyzing the characteristics of the system varying with the position of the single load, the control conceptions of the energizing mode alternating in primary side and the combination of the primary compensation capacitors are put forward. Then the power stabilization control strategy of the static-dynamic hybrid wireless charging system with multi short-segmented coils and multi loads is proposed. Finally, the theoretical analyses are verified with the experiments.

Details

Title
Power Stabilization based on Switching Control of Segmented Transmitting Coils for Multi Loads in Static-Dynamic Hybrid Wireless Charging System at Traffic Lights
Author
Liu, Han; Tan, Linlin; Huang, Xueliang; Zhang, Ming  VIAFID ORCID Logo  ; Zhang, Zhenxing; Li, Jiacheng
First page
607
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2403006484
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.