It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
To investigate the potential role of immune-related genes (IRGs) and immune cells in myocardial infarction (MI) and establish a nomogram model for diagnosing myocardial infarction.
Methods
Raw and processed gene expression profiling datasets were archived from the Gene Expression Omnibus (GEO) database. Differentially expressed immune-related genes (DIRGs), which were screened out by four machine learning algorithms-partial least squares (PLS), random forest model (RF), k-nearest neighbor (KNN), and support vector machine model (SVM) were used in the diagnosis of MI.
Results
The six key DIRGs (PTGER2, LGR6, IL17B, IL13RA1, CCL4, and ADM) were identified by the intersection of the minimal root mean square error (RMSE) of four machine learning algorithms, which were screened out to establish the nomogram model to predict the incidence of MI by using the rms package. The nomogram model exhibited the highest predictive accuracy and better potential clinical utility. The relative distribution of 22 types of immune cells was evaluated using cell type identification, which was done by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm. The distribution of four types of immune cells, such as plasma cells, T cells follicular helper, Mast cells resting, and neutrophils, was significantly upregulated in MI, while five types of immune cell dispersion, T cells CD4 naive, macrophages M1, macrophages M2, dendritic cells resting, and mast cells activated in MI patients, were significantly downregulated in MI.
Conclusion
This study demonstrated that IRGs were correlated with MI, suggesting that immune cells may be potential therapeutic targets of immunotherapy in MI.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer